Transition is not easy – How we are doing on climate change.

Facebooktwittergoogle_plusredditpinterestlinkedin

Do you ever wonder about how the global transition away from fossil fuels is going?  Or how climate change is progressing?  Lately, the media have been so stuffed with stories from the circus, that other kinds of news have been crowded out.  Even the circus has some acts relevant to the climate question, but let’s start at the beginning.

On June 8th, 2017, Andreas Goldthau published a commentary in Nature on the needed global transition to a low-carbon economy.  It does not appear to have attracted much attention, but then the current Trump circus spectacle is monopolizing the media, both fake and social, at least in the western world.  Goldthau may be well known in economic circles, although his is a new name to lowly marine ecologist me, but I believe he knows what he is talking about.  He is director of the Centre of International Public Policy, Royal Holloway, University of London; an associate at the Belfer Center for Science and International Affairs, Harvard University; and provides scientific support to the German G20 presidency.  (With those responsibilities, I’m surprised he had time to write an article for Nature!)

In his Nature piece (which is open access), Goldthau argues that the G20 is an appropriate global grouping to govern the global shift to a low-carbon economy.  Whether or not the G20 is capable of doing this, the need for global governance should be readily apparent when we consider the extent of the change that is required if we are to accomplish a smooth transition in the short time necessary to keep the warming of the world’s climate within a 2oC limit set by the Paris Agreement.  Since many environmental scientists are now arguing that even 1.5oC is too large an increase to retain reasonable ecological sustainability, the need to keep within the 2oC limit should now be seen as beyond dispute if we want a reasonably sane future.  (Coral reefs are an ecosystem that is being radically and irrevocably changed by the 0.9oC increase already seen.)  Goldthau’s article provides a concise listing of the changes that have to occur, the costs of same, and the degree of economic and societal disruption that is likely.  The need for global governance to make this transition as smooth as possible is a no-brainer.  Goldthau’s article is worth a read, because few people yet understand the extent of the transition that faces us.

Some countries, such as most of those in (A) gain most of their GDP from exploitation of their fossil fuel resources, and could be hit hard as we transition.  Other countries (B), with the capacity to develop low-carbon technologies, should be winners.  This mismatch demands global governance of the transition to minimize and spread risks if economic disruption is to be minimized.  Figure © A. Goldthau and Nature.

The issue that makes this transition particularly complex, is that there will be losers as well as winners among countries.  For example, the global price tag for the energy transition could be US$ 120 trillion between now and 2050, because we must halve oil use and cease use of coal during that time to have even a 66% chance of remaining within the 2oC limit.  That is about twice the current annual investment in energy projects, every year until 2050.  During this transition, there could be big winners and big losers, partly because fossil fuels yield most of their dollar value as they are extracted, while renewables yield value through innovations in advanced technology.  Technologically strong nations, particularly among the OECD nations and China, will have most to gain, while technologically weak, but fossil fuel rich countries will lose.  Countries like Russia, Saudi Arabia and Australia, rich in fossil fuels, may be unable to sell their fuels, and the falling tax revenues in such countries, and failing corporations with major fossil fuel investments, could combine to stress and perhaps collapse economies.  Goldthau argues that global governance is essential to prevent the risks involved spiraling out of control.

The current global value of all recoverable fossil fuel reserves is about $100 trillion, five times the GDP of the USA.  Those assets are held by pension funds, banks, companies, municipalities and private households around the world, but keeping within the 2oC limit requires that we burn no more than one third of them.  Most of those assets are going to have to disappear into thin air when coal, oil, or gas gets left in the ground.  In addition to these losses, there are capital costs of old energy infrastructure, from wells to refineries, to pipelines to power plants that will never be recouped.  The losses won’t be limited to investors, but will ramify through the world economy – fossil fuels represent 20-30% of the value of stocks across world markets.

There are economic benefits in the renewable energy sector as well.  Indeed, Goldthau repeats IRENA’s estimate that doubling the proportion of renewables in the global energy mix by 2030 would increase the global rate of economic growth by 1 percent.  But the benefits are unlikely to accrue to those sectors losing out as fossil fuels collapse.  We will need some degree of global coordination to minimize and spread the risk associated with these changes.  Given the current (political) state of the world I have little confidence that putting such governance in place will be easy.  So, in the final analysis, this need for global governance is just one more way in which the task in front of us is massively wicked.  (Wicked problems are large, complex, and hideously difficult to solve… and we caused this problem ourselves!)

What about Canada?

Goldthau barely mentioned Canada in his article, although his chart does show Canada as receiving only a small percentage of net GDP in the form of oil rents – a sign of how unprofitable the Canadian oil sector is at present, rather than a measure of the importance of the fossil fuel sector to our economy.  And Canada’s transition out of fossil fuels seems increasingly likely to be driven more by market forces than by concerted action on climate.  This is because our chief oil reserves are locked up in tar sands, difficult and costly to extract, and difficult to refine into desired products, and because our main oil and gas reserves are in places that are far from existing markets, and separated by highly valued natural environments from getting better access.  Canadian past foolishness in not providing for refining capacity, or in carefully thinking through routes to market is now making our products a lot less desirable than competing products from elsewhere.  In an economy in which demand for fossil fuels is no longer guaranteed to grow and may well shrink rapidly, Canadian products are at a distinct disadvantage.

Supporting evidence of the current state of Canada’s fossil fuel sector is readily available in the media.  To begin with, the price of oil remains stubbornly under $50 per barrel despite OPEC efforts to reduce supply.  On August 24th, the Globe & Mail reported that bond-rating service DBRS is forecasting continued sluggishness through 2019, with crude prices that year in the $50-55 per barrel range.  This is at least $10 lower than the number being used by Canada’s oil-producing provinces in their own financial forward planning, suggesting that significant shortfalls are in the offing.  Alberta, with a $10 billion deficit this year, is likely to face particularly difficult times.

Low prices also affect investment in the Canadian industry.  Back in June, Adam Waterous discussed the changing pattern of investment in Canadian oil reserves.  He noted that foreign corporations had divested themselves of $24 billion in Canadian oil assets over the previous three months, selling to Canadian partners.  He suggested this is part of a global trend for companies to invest in resources closer to home, to specialize in extraction from the stores they know best, and in the regulatory regime they understand best.  He argued, as an oilman, that this means we are going to enjoy the benefits of Canadian ownership of our oil patch.  I find that an interesting spin that conveniently forgets the difficulty of selling tar sands product on a global market for prices that will allow even a modest profit on investments.  I think it much more likely that Canadian oil corporations are being set up to be left holding the bag when the value evaporates, as it must if we are to keep most oil reserves in the ground.  My conclusion – we definitely don’t need lots of new pipelines, because we are not going to be selling much oil overseas in future.  We will use some of our oil to fill domestic need, and will have to write off the value of most of it.

Which brings me to another cost looming for places like Alberta – the cost of environmental remediation after the oil boom fades.  This is a cost with a perverse negative effect on decisions to invest in these resources, as well as one that looms over current owners and citizens.  On July 14th, Tim Gray of Environmental Defense, writing in the Globe & Mail, raised this issue.  His article was prompted by a recent court case in which costs of clean-up had not been deemed important enough to be paid ahead of debts to creditors of a bankrupt oil company.  That case is being appealed by the Alberta Energy Regulator, which wisely recognizes the immense, and growing, unfunded costs of environmental remediation on the books of oil companies throughout that province.  In the tar sands, in particular, there are now tailings ponds (lakes really) that in total cover an area greater than that of Vancouver plus downtown Toronto combined, and growing at 25 million litres per day.  These lakes are filled with toxic hydrocarbons, heavy metals, water and sand, and oil companies have yet to propose any way to remediate them, other than hoping for the best (the naïve idea that they will somehow settle out, allowing a vibrant living lake to exist on top of the toxic mess below).  Canada and its provinces have been lax in not requiring oil companies to set aside funds to cover remediation costs.  With lots of nodding and winking, all parties have pretended that promises to leave the environment clean and functioning after the oil is extracted would be good enough.  When value evaporates, as it will, and companies collapse, or move off to greener pastures, such promises will be long forgotten, and funding will simply not appear.  The mess will remain, as a long-term cost to the people (and environments) of Alberta, and perversely an additional reason why Canadian tar sands oil will not fare well on world markets.

Lest you think I am just an environmental scientist wading into waters he does not understand, a recent article in Hill Times makes essentially the same point I am making about the role of the fossil fuel industry in Canada’s economy – it is going to get a lot smaller.  That article points also to patterns in the gas industry showing similar things to oil – claims that are bolstered by several recent news items on developments in BC.  In Canada, large, export-driven natural gas projects are fizzling as their development costs prove uncompetitive.  Canada is not becoming a global petrostate, after all, which is actually a good thing if we are going to do our fair share to rein in climate change.

Reverting to a global perspective, it is quite difficult to discern what is happening with the demand for oil.  While current data indicate that the demand for oil continues to rise, though at a slowing rate, different sources claim their own crystal balls tell quite different stories about the next few decades.  A big part of the problem lies in uncertainty about the rate at which electric cars, self-driving cars, and an Uber economy in which private vehicles become increasingly a nostalgic luxury, are going to alter the demand for oil for transportation.  In an article in late May, the Wall Street Journal provided a list of predictions:

Shell, headquartered in Europe, has the most pessimistic view and is actively shifting out of oil and into gas.  The IEA, also in Europe, sees the peak in demand not coming until sometime after 2040, although they report that 2018 will see a lower increase in demand compared to 2017.  Other oil companies are all over the place (and you can bet that what an oil company says publicly is likely more optimistic about continuing demand than what it whispers in closed-door meetings).  Chevron and Exxon-Mobil, both based in the climate-denying USA – don’t even see a peak on the horizon!  Still, regardless of what oil companies proclaim, our need to fight climate change will likely bring down our use of oil more rapidly than most prognosticators claim to expect.  ThinkProgress heads its article on the coming decline in use of oil an investor death spiral driven by the rise of electric cars.

So how is the environment faring anyway?

The concentration of CO2 in the atmosphere above Mauna Kea stood at 404.82 ppm on August 27th, declining slowly from its seasonal peak this May (when it approached 410 ppm).  July tied July 2016 as the warmest July on record, despite relatively cooler, wetter weather in the eastern portion of North America.

Yes, I’ve seen this map before.  In fact, all the maps for the past 7 years have looked remarkably similar – the planet is becoming pink.  But the message is serious; this July was just 0.05oC cooler than July 2016, the warmest July on record.  And this month was also the 391st consecutive month that was warmer than the 20th century average for that month.  I’d bet on maps continuing to look like this into the future!  Image courtesy NOAA National Centers for Environmental Information.

The draft Climate Science Special Report, being finalized by the US government, and brought to public attention by the New York Times, is quite clear.  “The world has warmed (globally and annually averaged surface air temperature) by about 1.6°F (0.9°C) over the last 150 years (1865–2015), and the spatial and temporal non-uniformity of the warming has triggered many other changes to the Earth’s climate.”  “Many lines of evidence demonstrate that human activities, especially emissions of greenhouse (heat-trapping) gases, are primarily responsible for recent observed climate changes.”  And it goes on to report all the things you and I know already about likely increases in temperature, changes in patterns of precipitation, and greater frequency of severe weather events during coming decades.  I cannot wait to learn what chief clowns Scott and Donald will do with it, but it likely won’t make their climate change-denying souls happy.

What new science is telling us

There has been other climate news if one ventures into the science literature.  On 24th July Nature Climate Change posted a new article by Guojian Wang, of the Ocean University of China, and a team of seven colleagues from Chinese, Australian and US laboratories (available here).  It reported analyses of global climate model performance with respect to el Niño events.  By studying responses of 13 global climate models under the aggressive RCP2.6 scenario – the only modeled IPCC scenario for CO2 mitigation that achieves a warming target of <+1.5oC during this century — they reveal that the frequency of extreme el Niño events (comparable to that in 1997-98, or in 2014-16) increases linearly with global mean temperature and has doubled by the time temperature reaches +1.5oC.  Furthermore, they find that even though modeled global temperature stabilized at +1.5oC around 2050, the frequency of extreme el Niños continued through this century.  Where el Niños of 1997-98 size occurred about once every 22 years under preindustrial conditions, the models generated them about once every 10 years around mid-century, and about once every 7 years by century end.   Comparable effects on severity of la Niña were not seen.

This is a modeling study, and while the models are very good, models can deceive.  Still, given the extent to which extreme el Niños now impact weather patterns around the world, these results should give us pause.  They suggest that even if we can stabilize warming, keeping it within 1.5oC – a very demanding task itself – we are still going to have to deal with an increased frequency of severe el Niños and the damage they cause.  We really opened Pandora’s box when we began to warm the climate.

Another piece of bad climate news was provided by an article in Science Advances, which appeared on 2nd August (it’s open access).  In it, Im Eun-Soon of the Hong Kong University of Science and Technology, with two colleagues from US institutions, reported on the likelihood of life-threatening heat waves as climate warms.  They used a wet-bulb temperature of 35oC, recognized as a lethal threshold for humans, and examined occurrences of heat this extreme under a business-as-usual (RCP8.5) and under a moderate emissions reduction (RCP4.5) scenario of fossil fuel use.  (The wet-bulb temperature is defined as the temperature that an air parcel would attain if cooled at constant pressure by evaporating water within it until saturation.  It is a combined measure of temperature and humidity, and is always equal to or less than the usual (dry-bulb) temperature as reported in weather forecasts.)  Eun-Soon and colleagues note that previous studies have already pointed to problems of extreme heat in the Persian Gulf region, so they turned their attention to south Asia.

Figure 2 (part) from the Eun-Soon article showing annual maximum levels of wet-bulb temperature for present-day (left), and expected at end-century (2071-2100) under moderate emissions mitigation (center) and business-as-usual scenarios (right panel).
Figure
© Eun-Soon and Science Advances.

Eun-Soon and colleagues show that towards the end of this century, under the more extreme, business-as-usual conditions, the 35oC wet-bulb threshold is exceeded at a few locations in the Chota Nagpur Plateau, northeastern India, and Bangladesh, and that this threshold is approached over most of South Asia, including the Ganges river valley, northeastern India, Bangladesh, the eastern coast of India, Chota Nagpur Plateau, northern Sri Lanka, and the Indus valley of Pakistan. many regions in south Asia, and some in south-east Asia, exceed this limit.  We don’t need to be reminded of the enormous numbers of people who live in these places, or of the fact that they have modeled average climates rather than results for particularly warm years.  As they state in the final sentence of their abstract, “climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability”.  What do we do with this information?  Some of us in the west, may simply breathe a sigh of relief that we live where we do.  Others might be motivated to work even harder to bring climate change under control.

There has also been some good climate news in the technical press.  On 24th August, Nature published a report by Vasilii Petrenko of the University of Rochester, and a team of 15 colleagues from institutions in Australia, the US, and Europe.  It concerned methane emissions in the past, specifically during the time known as the Younger Dryas-Preboreal warming period, 11,700 to 11,300 years ago.  That was a time long before humans were having significant effects on climate, when the planet underwent a rapid warming over a matter of decades at the start of the Holocene.  Petrenko and colleagues sampled methane trapped in bubbles of ancient air in ice from the Taylor Glacier in Antarctica, and separated methane comprised of 14C from methane comprised of 12C.  Methane from ancient fossil sources contains essentially no 14C because it will have all decayed, while methane from recently living sources contains a ratio of 14C to 12C that approximates that in the atmosphere (as much more abundant CO2) at the time the methane was formed.  At the present time, the world is experiencing a combination of methane emissions from fossil sources that includes natural emissions and man-made emissions due to our fossil fuel and other mining activities, but in the Younger Dryas all fossil methane emissions were natural.

The changing concentration of methane in the atmosphere is shown as parts per billion by volume for the period from the late Pleistocene through the Holocene.  YD and PB refer to the Younger Dryas and Preboreal periods when the second of two very rapid increases in concentration occurred, and the time frame within which Petrenko and colleagues did their analyses.  Not shown is the recent very rapid rise in methane concentration to more than 1800 ppbv due primarily to human-caused emissions during the last 100 years.
Image
© P. Hopcroft and Nature.

So, what on earth does all this have to do with climate change?  Methane is ‘the other’ greenhouse gas that we are emitting into the atmosphere, and while we can get estimates of the rate of total emissions (human-caused plus natural) by measuring the concentration of methane in the atmosphere, and using our knowledge of the processes and pathways that remove it from the atmosphere, those estimates of emission rate are relatively imprecise.  By looking at what happened during the Younger Dryas-Preboreal time, it is possible to gain a more accurate estimate of the rate of natural emissions of fossil methane at a time when the world was warming, under conditions not too very far removed from today.  And that is what Petrenko and colleagues have done.

To appreciate what their approach required, understand that they are measuring trace amounts of methane in minute bubbles of air (at ratios of the order of 10-19 parts methane per part of air), while discriminating methane composed using 14C from that using 12C.  This is micro-scale measurement that makes the eyes of this environmental scientist blur – not something I’d want to do, but something that causes me to be impressed by the capabilities of those who dig doing this type of science.  To make their measurements, Petrenko and colleagues had to use rather large samples of subsurface, dated ice from the glacier – about 1000 kg per sample.

What did they find?  That the rapid increase in atmospheric methane during that time period was due almost entirely to emissions of methane from wetlands and other sources of recently-formed methane, and that no more than 19% of the methane emissions originated from fossil sources such as marine methane hydrates and melting permafrost.  Their best estimates are that natural emissions of fossil (14C-free) methane at that time were 15.4 teragrams CH4 per year or less (that’s 15.4 billion kilograms of methane).

What does this have to do with present-day climate change?  A lot, because our current estimates of the contribution of fossil methane to total emissions are around 52 teragrams CH4 per year.  If we assume, as Petrenko and colleagues do, that present-day rates of emissions of fossil methane from natural sources are no greater than they were during Younger Dryas-Preboreal times, our current estimates of that rate are too high by at least 36 teragrams CH4 per year.  Conversely, and this is the important point, our estimates of human-caused emissions of fossil methane are too low by that same amount.  Climate scientists have long recognized that preventing the so-called fugitive emissions of methane that leak from oil and gas wells, that are often deliberately flared (burned) rather than being captured, would reduce overall methane emissions, thereby curtailing climate change and capturing additional hydrocarbon supplies from our mining activities.  What seems evident, based on Petrenko and colleagues’ work, is that we have greater scope for such fugitive capture than we had anticipated.  (What galls me is that I bet the oil and gas companies have known this all along, even if they did not know just how much more fugitive methane was available for capture.)

Another encouraging outcome, is that these results confirm that the rate of emissions of fossil methane did not grow during the rapid warming period (although emissions of methane from sources like wetlands clearly did).  While the Younger Dryas, a bit colder than now and only recently following a major glaciation, is not an exact analog of today, we can perhaps relax our concern over what will happen as climate warms and the Arctic melts.  Sure, there will be some positive feedback as frozen methane stores are released, but the extent of that positive feedback, seems, just perhaps, less frightening than it had.  And in this crazy world, a slight diminution of frightening news is definitely good news!

On to the more political news

My final article from the technical press is a fun one indeed.  Naomi Oreskes, a science historian at Harvard, has done a great job exposing the systematic pattern of lying and misinformation practiced by the climate deniers, and the degree to which they cooperate with each other to systematically cast doubt on the evidence for climate change.  This group, well-represented in the USA, but with outlier cells in other countries such as Canada, Australia and the UK, has applied the lessons learned from the successful, multi-year campaign by the cigarette manufacturers to muddle the evidence on the link to cancer, thereby gaining many years of profitable sales by denying the inevitable.  (Indeed, many of the active participants in climate change denial had previous lives in the ‘smoking is not dangerous’ campaign.)  Anyway, Oreskes decided to take up a challenge thrown down by Exxon-Mobil.

As part of a probe begun in 2015 by various parties including the New York Attorney General into Exxon-Mobil’s possible criminal behavior in deliberately misreporting the climate science being done by its own scientists, the giant company found itself beset by numerous subpoenas and similar legal entanglements.  In its defense, Exxon-Mobil posted an extraordinary statement on its website, in which it claimed categorically that it had never distorted or withheld the results of climate research by its science team over its 40-year long history as a company.  On the site, on 20 October, 2015, Exxon-Mobil posted copies of the 50 peer-reviewed documents its climate scientists had generated over that time, as well as a number of other public documents it had produced over the same period.  On the site, Exxon-Mobil stated: “Read the documents.  Go ahead, you really should. Read the documents InsideClimate News cites that purportedly prove some conspiracy on ExxonMobil’s part to hide our climate science findings.  In case you need help finding them, the link to the documents in question is right here.”

This was a challenge Naomi Oreskes could not refuse!  The article, in Environmental Research Letters, authored by Geoffrey Supran, her post-doctoral fellow, and Naomi Oreskes, appeared on 23rd August.  It’s open access, here, and the New York Times wrote an interesting report on it.  Supran and Oreskes compared 187 climate change communications from ExxonMobil, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements (‘advertorials’) in The New York Times.  These included all documents offered by Exxon-Mobil with its challenge, and all other publicly accessible documents they could obtain.  They specifically excluded “archived internal documents, advertorials published in newspapers beyond the NYT, and non-peer-reviewed materials such as speech transcripts, television adverts, patent documents, shareholder reports, and third-party communications (for example, from lobbyists, think-tanks, and politicians funded by ExxonMobil)”, but acknowledged that such documents could form the basis of a more extensive analysis.  They looked specifically for positions taken in the various documents on the reality of climate change, on whether it is human-caused, on its seriousness, and on the degree to which there are solutions to it.

What they found was a systematic increase in doubt as one moved from the relatively hidden (from the general public) internal and peer-reviewed documents through the other public documents to the advertorials, which raised the greatest amount of doubt.  This was true whether one considered the question of whether climate change was real and human-caused, whether it was serious, or whether feasible solutions to this problem existed.

The shifting perspective on climate change available in Exxon-Mobil documents, as assessed by Supran and Oreskes.  In each case, more readily accessible documents are more likely to cast doubt on the existence, cause, importance or solvability of climate change.
Figure
© N. Oreskes and Environmental Research Letters.

In their conclusions, Supran and Oreskes are careful to note that they are NOT concluding that Exxon-Mobil suppressed, withheld, or sought to hide data on climate science.  They note explicitly that Exxon-Mobil contributed to climate science.  However, they argue their analysis supports the conclusion that Exxon-Mobil misled non-scientific audiences on climate change.  They support this claim with three points: 1) the claims about climate change vary substantially among the categories of article, with the advertorials being far and away the most skeptical; 2) in public, Exxon-Mobil contributed quietly to climate science and loudly to raising doubts about it; 3) the advertorials contained several instances of explicit factual misrepresentations concerning climate science.  Supran and Oreskes reached their conclusion about quiet contribution and loud casting of doubt in the following way.  They report that Exxon-Mobil purchased space for an advertorial in the New York Times every week from 1972 to 2001, that these cost, on average $31000 each, and that one quarter of them fell on the Op-Ed page.  This is a hefty expenditure to secure a very public pulpit for the doubt-creating advertorials.  While Exxon-Mobil peer-reviewed and non-peer-reviewed articles are poorly cited (suggesting readership in the 10s to 100s), and peer-reviewed articles are usually locked behind paywalls, inaccessible except to scientists and others with access to an academic library, the advertorials were seen by millions of readers.  My summation: Supran and Oreskes did precisely what Exxon-Mobil asked – they looked at the evidence and found Exxon-Mobil guilty as charged.  Climate change denial is alive and well at one of the largest fossil fuel corporations on the planet.

I’ll close with brief comments about three other political event-chains relevant to climate change.  In Canada, the Liberal government of British Columbia fell unexpectedly in an election called by a Premier who expected to strengthen her hand, and the New Democratic Party came to power.  The NDP campaigned on opposition to several resource development projects in the province, in particular the expansion of pipeline capacity from Alberta (Kinder Morgan twinning project), and the development of major LNG export projects.  Petronas has already withdrawn from the large LNG project it was leading, and the Kinder-Morgan twinning looks quite shaky now that the provincial government will join the indigenous and environmental groups opposing it.  This poses an interesting dilemma for Justin Trudeau, whose national government has endorsed both projects.  My guess is that Justin is hoping that market forces will make such projects financially non-viable.  That way, he won’t have to make a difficult decision in which he cannot please his followers who want climate action and his followers who want to ensure the resource sector and the national economy flourishes.  Time will tell, but this cartoon from some months ago captures our Prime Minister’s predicament well.

 Cartoon © David Parkins, Globe & Mail.

In Australia, the federal government seems to be entangling itself in something rather sticky and a bit smelly as it tries to encourage development of major new coal export programs, while also claiming it is protecting the Great Barrier Reef, which will inevitably suffer directly as tankers laden with coal sail through its waters, and indirectly when that coal is burned further warming a climate which is already proving too warm for the corals the reef depends upon.  Australia’s latest report on greenhouse gas emissions reveals a particularly poor result (continuing increase in rate of emissions) for a wealthy, developed country that has signed on (half-heartedly) to Paris.  Since the Liberal Country coalition government wrested power from Labor in 2013, greenhouse gas emissions have risen 6% compared to a 10% drop during the 6-year Labor reign.  Emissions are currently 550.4 million tonnes CO2 equivalent per year, pretty high for a country of 24.6 million people, and on par on a per capita basis with emissions in the USA and Canada.

Executive Orders are playing in the center ring while Pruitt and Zinke quietly undo regulations offstage.  Cartoon © J Darcy

And in the USA, the only country on earth where a three-ring circus serves as its government, we have an ongoing performance at center stage by an artful illusionist, the great Donald Trump, who keeps the crowd mesmerized and distracted by a never-ending series of explosive, outrageous, distressing, and even sometimes plain disgusting antics, while his minions quietly dismantle important parts of the country’s governance.  With Donald’s own series of Executive Orders (most of which are admittedly just photo ops using meaningless pieces of paper) creating a drum beat of deregulatory action, henchmen Scott Pruitt at EPA and Ryan Zinke at Interior are quietly dismantling decades of environmental protections affecting land, water, and air across the USA.  Even Commerce Secretary Wilbur Ross got into the act by stepping in to reject a decision on flounder catch made by the Atlantic States Fishery Commission, the 75-year old, well-respected fisheries management body for most of the US East Coast.  National Monuments are having their borders redrawn to free up land for mineral exploration, water quality rules are being thrown out like so much bathwater, and regulations governing the releases of greenhouse gases by the energy industry or the automotive industry are all being looked at and rejected when possible.  Along the way, virtually every science-based advisory panel has been re-staffed with industry cronies, or simply disbanded, science information is disappearing from agency websites, and scientists are being reassigned.  It is all very reminiscent of how Harper’s government tried to shut down Canada’s government science, but it is being done far more rapidly, and more thoroughly.  Even some of their fans in the oil and gas industries are becoming worried that they are moving too fast and too far.

The latest move, rolling back the Federal Flood Risk Management Standard, which will remove a requirement to consider climate change and sea level rise when building infrastructure, seems particularly ironic in the week that Hurricane Harvey submerges most of coastal Texas in a meter or so of rain over three days.  As The Guardian said in an article on effects of sea level rise on flood risk two days ago, “Houston already has some of the laxest building regulations for structures in potential flood zones and the president wants to spread that policy across the US”.

Categories: Climate change, In the News, Politics, Tar Sands | Comments Off on Transition is not easy – How we are doing on climate change.

Understanding the Anthropocene – we have cast our planet adrift on a dangerous voyage, and need to take charge before it is too late.

Facebooktwittergoogle_plusredditpinterestlinkedin

Our only home is adrift, and moving fast into dangerous waters.  We need to man up, take over the controls, and bring it to safer waters.  The terrible irony is that Earth is adrift because of our unthinking actions.  It’s high time to clean up the messes we have made.  Yet mostly, we do not even realize we are in a predicament.

The enormous success of Hokule’a, the Hawaiian voyaging canoe which on June 17th 2017 completed its 3-year, round-the-world tour using only traditional Polynesian navigation is a great inspiration, revealing that people are capable of seemingly impossible feats.  We now need to build new navigation skills and sail our planet towards calm waters, and away from the dangerous place into which our carelessness has pushed it.  Photo © Bryson Hoe, ʻŌiwi TV and the Polynesian Voyaging Society

Our sheer abundance is part of the problem, and our impatience re the future

Back when I was born, there were about 2.3 billion people on the planet; today 7.5 billion.  That is more than three times as many of us eating other plants and animals, drinking water, breathing oxygen, and using much more than 3 times more energy, along with a host of other resources, because most of us have more stuff and do more stuff that burns energy than people of my grandparents’ time did.  Furthermore, our population continues to grow, although at a slower rate than it did when I was younger, and by 2050 will have increased by a further 2.3 billion (the total population at the time of my birth) or more of us.  I have lived through what is called the great acceleration – that enormous change in the intensity of human activities that occurred beginning in the mid-1950s and continuing until today.  And most of the time, I am not aware of this.

None of us are.  Immersed in a global culture of consumerism that values only the new, we know that the times they are a’changing, but we do not appreciate just how rapidly, nor how profoundly.  Except when we deliberately look back, or look at data revealing temporal trends, and most of us, mostly, do not look back.  That would be nostalgic, old-fashioned, out-of-touch.  Instead we peer excitedly into the future like so many spaniels, heads out the windows of the speeding car, ears swept back, flapping in the breeze.  Our evolution has not prepared us for this ride we are on, and the ride will probably get rocky because of that.

Is this us?  Always looking into the future while moving as fast as possible.  Photo © Daily Mail/London Media

Humans (genus Homo) evolved out of earlier australopithecines about 2 million years ago, and our species, Homo sapiens, is about 150,000 years old.  We spent most of the Pleistocene in Africa, venturing out to the rest of the world only about 60,000 years ago.  Some of us. endured the final glacial episode (the Wisconsin) in southern France (among other places), moving north as it waned and the Pleistocene gave way to the Holocene some 11,700 years ago.  Humans developed agriculture in several locations around the world about 8,000 years ago, and the entirety of human civilization since then has been spent in a remarkably benign and stable environment.  Until now.  Our Holocene experience has not prepared us for a world that is changing more rapidly than at most times in the geological past.

In Our Dying Planet, I talked about how our evolution has prepared us for jumping out of the way of Sabre-toothed cats and other predators, but not for making long-term plans to cope with advancing (or melting) glaciers.  That is one major reason why we have such difficulty making decisions about climate change, but climate change is not the only slow-by-human-standards, but fast-by geological-norms, change now occurring on this planet.  Relatively suddenly, over the last 50 years or so, we have been ripped from the bosom of a benign Mother Earth, and plunked into a world of constant change.  Mostly, that change is of our own making, but that does not make it any easier to appreciate.  The Anthropocene really is a very different world to any we have known during all of recorded human history.  We all need to understand where we are.

News media report new events; they don’t provide much context

Some neonic news

Our media brim with information on planetary-scale change.  Unfortunately, most media reports deal with a particular event (the news), and do not relate it to the wider pattern of change.  For example, a recent article on the effects of neonicotinoids on queen bees, published by Gemma Baron and colleagues at University of London, UK, and University of Guelph, Canada in Proceedings of the Royal Society B earlier this year attracted the attention of the Globe & Mail.

Honeybees (Apis mellifera) and other pollinators are vital to our agriculture, yet are being seriously harmed by our use of insecticides.  Photo © Zachary Huang

In a lengthy article, G&M reported the study accurately.  Baron and colleagues had dosed queen bumblebees with neonics at levels representative of what they would have picked up foraging in an agricultural environment where such chemicals were in use, and then measured fertility, egg production and so on.  They found significant effects of the insecticides on egg production and survivorship which would have led to colony failure.  The G&M article also provided some background – bee populations are in decline around the world, neonics are one of several possible causes, the plant fertilization services of bees are important to our crop production.  But the article did not flesh out that background information with the details that have appeared over time in other studies.  To find a summary of such background information, you have to look further, such as to the report on pollination issued by IPBES – the UN’s Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services.  That report, published in 2016 contains gems such as 30-35% (by area farmed) of current crop production depends at least in part on animal pollinators, and that a total loss of pollinators would result in loss of 5-8% by volume of agricultural production worth $235-577 billion per year worldwide as well as critical erosion of the global food supply.  Further, our dependence on pollinator-dependent crops has increased in recent years due to shifts in crop species while our total production has increased, so that, overall, our dependence on animal pollinators has increased 300% over the past 50 years.  And, finally, yields of pollinator-dependent crops are dependent on presence of a diverse pollinator community, managed domestic bees cannot replace such diverse natural communities as pollination agents, and many pollinator species of bee, butterfly, other insect and vertebrate species have been declining, or going extinct, in recent decades.  The New York Times reported on the release of the IPBES report, but without including any details of the magnitude of changes already observed.  Oh, and in case you are wondering, recent evidence in other publications reveals that insect populations in general have been undergoing steep declines wherever they have been measured.

One summary of such studies appeared in Science for 12th May 2017.  Gretchen Vogel, a Science journalist reviewed results of long-term monitoring of 100 European nature reserves by the Krefeld Entomological Society, a German NGO of primarily amateur entomologists who have been tracking the abundances and diversity of insects since 1905.  Beginning in 2013, society members noted dramatic reductions approaching 80% in insects caught in standardized sampling procedures at a dozen different nature reserves in Germany.  Most of the group’s results are not yet published and the generality of this observation is not known, but it is indicative of serious changes in insect numbers and that has to mean serious changes in pollination activity.  A more recent experiment, also reported in Science in an article by B.A. Woodcock of the UK’s NERC Centre for Ecology and Hydrology, and 18 colleagues, examined the effect on three bee species of using neonic-coated seed in growing rape oil-seed crops in UK, Germany and Hungary.  In 22 treatment and 11 nearby control sites across the three countries, colonies of honeybee (Apis sp), wild bumblebee (Bombus sp) and solitary bee (Osmia sp) were sampled for reproductive effects.  They showed variable, but primarily negative effects of neonics on the capacity of the three species to persist from one year to the next.

Some Antarctic ice shelf news

The effects of our insecticides are not the only impact on the planet not being well-covered by reliance on the media.  Just this month, sometime between July 10th and 12th, the Larsen C ice shelf finally separated from Antarctica to produce an iceberg larger than Prince Edward Island or Delaware and containing ice sufficient to fill Lake Erie (if it was transported north, melted, and Lake Erie happened to be empty).  The widening, more than 120 mile long, split between the now-calved berg and the ice shelf has been followed, off and on, since it first started forming in 2010, and the final break was expected.  How did the media report this event?  Variously.  The American media generally began with the facts: it has broken off, it is very big, its eventual melting will not raise sea level because it was already floating.  Mostly they then reported some background – the earlier breaking off of Larson A and Larson B, and how reduction in extent of ice shelves can lead to acceleration of glacier flow and further melting which does raise sea level.  Interestingly to me, many American media then focused on whether or not this was a sign of climate change.  In The Daily Caller, based in Washington DC, Michael Bastasch devoted all but the first sentence of his report to the idea that the rest of the news media have been grievously incorrect in tying this event to climate change (they had not, but that does not matter),  He focused on comments of denialist Bjorn Lomborg and perfectly reasonable comments by Helen Fricker, Scripps glaciologist, that what had happened at Larson C was a normal Antarctic process.  The Atlanta Constitution Journal website had a ‘7 things to know’ article, ending with the role of climate change, where it managed to come down strongly on the view that climate change had nothing to do with it.  The Los Angeles Times, in an article by Sean Greene, was more circumspect (and accurate), but with a tone that stressed that there is nothing to worry about here.  It even quoted Fricker as saying, “Its still winter down there, for the next six months the ice shelf is going to be completely fine” – as in, don’t worry children, the sky is not falling tonight.  The Alamagordo Daily News stuck closely to the facts, noting that there is no evidence directly linking this calving event to climate change, but that warming will inevitably put more stress on the ice.

The progression of the split across the Larson C ice shelf.  Image © New York Times

An exception in my simplistic survey was the New York Times.  Its website provided a primary report with extensive background on the history of the split since 2010, and a nuanced discussion of the consequences of ice shelf breakup.  It covered the fact that this particular event is likely not directly a consequence of warming, while stressing that warming is taking place and radically altering the environment in Antarctica.  Reading this article would provide a good education on what has been happening, as well as on what had just happened.  The Times, however, went further with an op-ed by Yale University’s Fen Montaign who provided background to the event, including published comment by glaciologist John Mercer who stated in 1978, “If present trends in fossil fuel consumption continue… a critical level of warmth will have been passed in high southern latitudes 50 years from now, and deglaciation of West Antarctica will be imminent or in progress”.  We do not know how imminent the break-up of the West Antarctic shelf is.  We do know that the break-up of the Larson shelves in recent years is a good predictor of what may be coming next.  I did not look at media outside the USA on this topic.

I recognize that the news media are charged with reporting the news.  My point is that reading the news does not give us an understanding of the true extent of our impacts on the planet unless we are keeping track, maintaining some sort of record of past news, or reading more deeply to find the articles that give an overall review.  Most of us do not have the time for such in-depth inquiry, and the story of our impacts on the planet is received as a continuing series of apparently unrelated facts that most of us will be unlikely to stitch together.  When we don’t stitch them together, they fail to convey the real message – that we are seriously degrading our only home.  The fact is that our deleterious impacts on the planet are varied and the damage they lead to develops slowly (by human standards).  Becoming aware of what we are doing requires a major effort that most of us do not have time for.

One of the reasons I get so angry with the (now near continuous) reporting of coral bleaching is that each event is reported as something that happened to a coral reef somewhere far away.  Coral bleaching, in reality, is an ongoing commentary of our deleterious impacts on the atmosphere and the ocean; it is a story about us, our failures, and our need to act.  It does not come across that way very often.

The several ways in which we are stressing our only home

How are we degrading our planet?  An excellent introduction to this story is the small, easily-read book, Big World Small Planet, by Johan Rockström with some amazing photos by Mattias Klum.  It came out in 2015 as a way to convey the findings of the Planetary Boundaries project to a wider community.

Pointing out that the world as we know it is scarcely 10,000 years old, they argue that through the history of the genus Homo prior to the Holocene, the Earth’s climate shifted so radically from ice age to warm interglacials that it provided an environment inimical to the invention of agriculture, and that, indeed, we came close to extinction about 75,000 years ago during a critical cold period.  In a (to me) interesting twist on the conventional story, they relate the spread of Homo sapiens out of Africa to this climatic squeeze.  In any event, we have benefitted immensely from the benign climate of the Holocene, because by developing agriculture we were able to become sedentary, create food surpluses, and build the first complex states with citizens with diverse, specialized skills who were sustained by the food produced by equally specialized farmers.  Our populations grew, and our impacts on the environment began to grow.

Initially, of course, our impacts were almost entirely local.  And it is conceivable that our growing agriculture and land management activities may have increased the global rates of primary productivity over what they had been – not a bad thing.  However, as our global population grew, and as our technology advanced, we became able to harness vast amounts of energy locked in the muscles of other species, in flowing water, in wind, and in the chemistry of organic materials including wood and fossil fuels.  With the invention of the steam engine our growth in energy use began its rapid climb, and our impacts on the planet became far more intensive.

Greenhouse gases climbing

Since 1959, we have increased the concentration of CO2 in our atmosphere by 88 ppm or 28% (from 316 ppm in 1959 to 404 in 2016).  It is 42% above its level in preindustrial times.  We have also increased concentrations of methane, CH4, by 57%, and nitrous oxide, N2O, by 13% since 1950; 143% and 20% respectively since 1800.  Look at those percentages, these are substantial changes to the composition of the atmosphere, and the increase in these greenhouse gases is responsible for the climate change we are now witnessing.

Loss of biodiversity

We have increased the global extinction rate until it is now between 1000 and 10,000 times faster than the background rate of between 1 and 0.1 extinctions per million species years.  Along with the greatly increased rate of extinctions, we have been substantially reducing densities of species living on the planet, whether these species are insects, fish, birds or anything else.

This incredible photo expresses the sheer abundance of life in the oceans, but if we could weigh all the fish in the sea today, we’d find it is only 10% of what it was in the 1940s.  In less than a century we have reduced abundance in the oceans by 90%.  Photo © Greg LeCoeur.

Nitrogen and Phosphorus excess

We have massively altered the global nitrogen cycle.  Nitrogen, in its gaseous form (80% of our atmosphere) is inaccessible to plants and animals, but nitrogen in various organic forms, such as nitrates or ammonia, is accessible to plants which extract it from the soil.  Lightning strikes generate 3-10 Tg (teragrams) of fixed nitrogen per year, while certain bacteria fix between 100 and 300 Tg nitrogen per year (most estimates closer to 100).  In preindustrial times, this total fixation of under around 150 Tg nitrogen drove all biotic activity.  Humans, through cultivation of certain plants, chiefly legumes, that have symbiotic nitrogen-fixing bacteria in their roots, and (to a far greater extent) through our manufacture of fertilizers using atmospheric nitrogen, now generate an additional 170 Tg fixed nitrogen per year.  Effectively we have doubled the rate at which nitrogen is made available for biotic uses, and while some of this leads to enhanced agricultural production, most of it is surplus to agricultural needs, resulting in pollution and toxic algal blooms in many water bodies around the world.

We have similarly made massive changes to the availability of phosphorus through our mining of phosphates.  Overuse of phosphate-bearing fertilizers is causing significant problems in freshwaters around the world.

Terraforming

Our changes to the landscape itself have also been enormous over the last 50 years.  We now occupy in excess of 40% of the non-ice land surface for agriculture and have taken substantial additional land for urban areas.  Little land potentially suitable for non-irrigated agriculture remains, and we are not going to be able to feed the growing population without greater efficiencies in the entire food production chain.  We have also reduced the extent of forested land by about 40%, focusing our extractions on old-growth forests – the ones with the greatest biodiversity and greatest ecological resilience.  This drives down the capacity of the planet to withstand the changes that are inevitably coming with climate change and other stresses.

Freshwater, ocean pH, novel chemicals

Then there is the waste, and the pollution of freshwater supplies around the world – a subject which should be of existential concern since we all need water to live.  Also, our progressive acidification of the oceans due to the CO2 which dissolves into them from the atmosphere, and has already changed ocean pH more rapidly and to a greater degree than at any time since at least the Paleocene-Eocene thermal maximum 56 million years ago.  When I was a student, I was taught that the chemical composition of the ocean, including its pH, was so uniform that we could talk confidently about standard ocean water.  Not any more.

Finally, we are generating new novel chemicals at an enormous rate, such as neonicotinoid pesticides and plastic nanoparticles, and most of them find their way into the environment eventually.  Some prove benign; others do not.  Their consequences for ecological systems, and for us, vary, but many are severe and we find it very difficult socially and technically to correct the damage our novel chemicals produce.

As one tiny example of this problem of novel forms of pollution, the Globe and Mail published an Op-Ed by Tim Gray, of Environmental Defense, on 14th July, 2017.  Gray drew attention to the fact that Canada, at both national and provincial levels, lacks law that would require business enterprises to post bonds, or in other ways provide secure funding sufficient to clean up environmental damage done as a result of their activities, in the event they should fail financially.  The problem primarily concerns mining and other resource extraction and processing firms although heavy industry and electronic manufacturers are also frequent culprits.  At present, for example, Alberta law requires only that a mining company include in its business plan evidence that it has the financial capacity for, and plans in place to remediate environmental damage once extraction activities are finished.  If the company fails financially, or is liquidated, society is on the hook for any environmental damage left behind.

Gray pointed out that “Canadians are burdened by the accumulating financial liability associated with cleaning up the environmental messes made by abandoned oil wells, closed mines and decaying tailings dams.  For example, in Alberta, the oil sands have been producing a vast and growing legacy of tailings ponds. These ponds contain leftover toxic hydrocarbons, heavy metals, water and sand. They now cover an area larger than the preamalgamation city of Toronto and Vancouver combined and are growing at a rate of 25 million litres a day.  Estimates show that it will cost at least $44.5-billion to clean up the existing tailings ponds. This represents a bill greater than all the royalties paid to the Province of Alberta since the inception of oil sands business in 1970.”

His ire was provoked by news that the Alberta Energy Regulator (AER) planned to appeal a recent judge’s ruling that gave creditors priority access to a bankrupt oil company’s assets, over its financial obligations to clean up abandoned wells.  As he pointed out, the government, through AER, was right to appeal, but the long-term solution is better law.  And it’s not just in the tar sands.  Far too often our global economy generates novel pollutants (and I think the mysterious mix of chemicals used in extracting tar sands oil can only be called novel), manages to leak them into the environment to cause damage, and we then discover that clean-up is tremendously costly, mechanisms to do the clean-up do not exist, and the company concerned has already ceased to exist.  While Gray’s concern was motivated by one bankrupt oil company, the inevitable winding down of the tar sands industry has begun a process of divestiture, departure, and disappearance as corporate bodies restructure their assets away from owning tar sands.  I do not believe for an instant that companies that have spent their entire lives delaying, postponing and in other ways deferring the cost of clean-up will magically tidy up the day before they all leave town.  The tar sands story looks set to become one more story about how we have consistently avoided paying for environmental damage, planned or otherwise, in the course of doing business – all part of our conviction that protecting the economy comes first.

Our Terraforming seems to know no limits, not to mention our toxic litter.  Syncrude site, Alberta.  Photo © David Dodge, Pembina Institute.

The existential need to act

Getting back on track (I could not resist a comment on my beloved tar sands), once we add up the many ways in which we are altering the planet, it should be clear that we are creating enormous change, and therefore enormous stresses on the ecological systems that operate here.  I think we need to understand this fact, and be very worried.  We depend, far more than most of us appreciate, on the benign Holocene planet our global economy has developed on.

I also believe that we need that understanding in order to be inspired to develop the motivation to actually do something serious about this problem.  Recycling our garbage, and using active transport are fine, even noble, things to do, but we have to aspire to do a lot more than that to deal with our irresponsibility over the last couple of centuries.

What is called for now is a concerted effort first to stop doing those things that stress the ecological systems upon which we depend.  This means not only curtailing emissions of greenhouse gases in order to avoid having global temperatures increase more than 2oC above the preindustrial average, and eventually bringing the increase down to 1.5oC.  It means cutting our rate of production of fixed nitrogen by at least two thirds, curtailing growth, and eventually reducing the size of our own population, and moving aggressively towards a circular economy that maximizes efficiency with which we use energy and resources while minimizing waste.  In short, it means radical retooling of the human enterprise so as to ensure the long-term sustainability of the rest of the biosphere.

Effectively, we have got to recognize just how powerful we have become, and begin to use that power to repair our past excesses.  Long ago, our actions could not have affected our planet in any significant way, even if we had wanted to.   Now we cannot avoid affecting our planet and must behave in responsible ways so that our impacts are benign, or else move the planetary system in desirable directions.  Effectively, having grown up into the powerful beings we are, we have got to take on the responsibility of steering this amazing craft we call Earth, so that it moves into places that are conducive to the continued prospering of creatures like us.  Right now, we are in danger of steering into very risky waters; we need to navigate towards safe waters.  And we need to get moving now, because nearly all the trends I have mentioned are continuing to worsen into the future.

The story of Hokule’a, which I alluded to in a post not long ago, convinces me that the task before us is doable.  The story of Hokule’a actually begins well over 2000 years ago as Polynesians were expanding out into the Pacific.  That immense area of open ocean, with tiny islands scattered through it was settled by an amazing sea-faring culture, capable of long-distance, open-ocean voyaging at a time when European and Chinese sailors clung close to continental shores, afraid they might fall off the edge of the world if they did not.  The Polynesians, with no metal and limited technology, developed a science of navigation, called wayfinding, that made use of myriad clues, beginning with the stars and planets, but including the waves and tides, the flotsam in the water, fish and seabirds, and the smell of reefs and land.  They used this science to sustain trading journeys among the island groups throughout the Pacific.  For reasons unclear, the long-distance trading had more or less ceased by the time that James Cook and others were ‘opening up’ the Pacific to Europeans.

Despite this, when the Tahitian priest, Tupa’ia, agreed to accompany Cook as he continued his first voyage from Tahiti towards New Zealand and on to the west back to England, Tupa’ia knew the locations of the various island groups and their approximate distances from Tahiti, and he was able to impart this knowledge to Cook.  Tupa’ia had never travelled far beyond Tahiti; his knowledge was traditional, embedded in his culture.

Despite the evidence provided by Tupa’ia, the conventional western view that emerged, as it dawned on Europeans that all those tiny islands had been colonized by Polynesians, was that Polynesia had been settled by accident, as islanders out on the ocean fishing, or making short coastal journeys, got taken by storms and pushed off to new places.  The absurdity of this belief should have been obvious given that each island group was colonized by people bringing dogs, pigs, yams, coconut palms along with them – not the sort of goods one would anticipate being in the average canoe on a fishing trip.  We were still being taught that nonsense when I was a graduate student in Hawai’I in the late 1960s.

In 1975, as part of a resurgence of interest in their culture by Hawaiians, a forward-thinking group decided to build a new ocean-voyaging canoe using the traditional methods.  Canoes of that size had not been built in Hawai’i for at least 400 years.  With building under way, they strived to learn the now-lost science of wayfinding, and they located Mau Piailug, a Micronesian master navigator from far away on the island of Satawal, Micronesia, and brought him to Hawai’I to teach wayfinding to Hawaiians.  Hokule’a made its inaugural long-distance voyage to Tahiti in 1976, with Mau Pialilug finding the path.  It was the first wayfinding voyage between Hawai’I and Tahiti in 400 years.  There have been many subsequent voyages with Mau-trained Nainoa Thompson and subsequent Hawaiians wayfinding, all without use of modern navigational aids, and Hokule’a completed a three-year circumnavigation returning to Honolulu on 17th June 2017.

Hokule’a, and the interest in voyaging and traditional Polynesian wayfinding it has inspired has been a vital part of the revitalization of Hawaiian culture.  It not only demonstrated that traditional knowledge, almost totally lost, could be rehabilitated.  It showed that people, with sufficient learning and experience can do amazing feats – such as sailing across the Pacific from one small dot of an island to another without use of any instrumentation.  Hokule’a’s story also encourages me because we are pushing our planet towards a very bad place, and it is high time, as I argued in a recent post, that we start steering back towards quiet waters.  I know we have the capacity to undertake this new navigational challenge.  We just have to build the will to try.

Is our planet a Blue Marble, seemingly motionless in the heavens, or is it a giant canoe that we must now start navigating towards safe spaces?  I favor the canoe.  Photo © Polynesian Voyaging Society, ‘Oiwi TV and Kaipo Ki’aha.

Categories: Biodiversity Loss, Changing Oceans, Climate change, Communicting science, Fisheries, Land Use, Tar Sands, Uncategorized | Comments Off on Understanding the Anthropocene – we have cast our planet adrift on a dangerous voyage, and need to take charge before it is too late.

Just exactly what did Donald Trump do on 1st June 2017?

Facebooktwittergoogle_plusredditpinterestlinkedin

These days, maintaining a blog is a challenge.  It’s spring around here; a wonderful time of year, and a time with plenty of things to do other than prepare a post.  The environmental crisis, my primary focus, is an unravelling which proceeds slowly compared to human timelines (although at breathtaking speed if viewed from a geological perspective).  There simply is not breaking news every week or so, and, apart from an expected and grossly stupid announcement in the White House Rose Garden on June 1st, things have been relatively quiet lately on the environmental front, if one judges by the media.  Because.  This year, the Trump circus is sucking all the air out of the room, dominating the media at the expense of every other topic including the environment.

I don’t want to contribute my own rant to the anti-Trump chorus, and yet the possibilities for outrage, for flailing at the machine, and perhaps for humor are very enticing.  On Twitter, I tried referring to him as Unpresident Trump (riffing off his own tweet in which he referred to ‘unpresidented’ attacks by the media, while also noting his lack of qualifications for his job).  But that term did not catch on with others.  I’ve also thought of calling him Emperor Trump, assuming readers would make the connection to the emperor who had no clothes.

Unqualified, ill-informed, brash, outspoken, but apparently very comfortable in his own skin

He recently returned from his first overseas trip, with all the opportunities it provided for revealing his shallow absence of understanding or nuance, and his petulant, bullying, narcissism.  My congratulations to Emmanuel Macron, the newly elected President of France, who masterfully managed to out-manipulate him in the hand-shake and greeting department, and to Canadian PM Justin Trudeau, who responded to Trump’s misleading call for greater defense spending by NATO countries with “Decisions on Canadian military spending are made in Canada by Canadians”.  But back in Washington, desperate to remain the center of attention, he has now signed yet another Executive Order instructing his government to remove the USA from the Paris Agreement at the earliest possible date.  Nothing like moving fast.  But then Trump is only about the show, the event, the entertainment.  Definitely a petulant Unpresident.

It is increasingly difficult to take Donald Trump seriously.  His decision on the Paris Agreement reveals his total lack of understanding of that accord, or of how diplomacy works.  Far from restoring the stature of the USA in the world, he has eroded it severely.  Cartoons often tell real truths.  Image © Robert Ariail/The State.

Trump’s withdrawal from Paris may be a good thing

From an environmental perspective, the Trump presidency is likely to significantly roll back protections for US natural environments, much as the decade of rule by former PM Stephen Harper did in Canada.  Canadians are seeing how long it takes to rebuild environmental management, and the US will have that task once Trump is bundled off to wherever he ends up next – King of the World, perhaps.  On the international stage, Trump has chilled discussion of climate change, but has not yet had significant impact on actions being taken (even by States within the US).  In this regard, an interesting commentary appeared May 23rd in the Globe & Mail, written by political scientist Matthew Hoffman of University of Toronto.  He argued that it would be best for the world for Trump to announce a formal withdrawal from the Paris Agreement as soon as possible.  In Hoffman’s view, there is sufficient commitment to the idea of the necessity of global climate action for the world to move forward, whether or not Trump keeps the US near the front of the parade.  Better to have him make his illogical decision and fade away, then to have him continue engaged, while actively working against real progress.  Looks like Hoffman has got his wish.

Given my concern with the need for a much more robust effort at emissions reduction than is presently in place, I was not sure I agreed with Hoffman when I read his piece, although I do believe the irrelevance of a denialist agenda is being recognized by an ever-widening majority of people.  I feared that until he does fade from view, we would just have to put up with the strange reporting on Trump’s body language and his mental health that fill the pages of the reputable press, while Trump does what he can to strip away environmental regulations.  Trump is clearly unlike any prior US President.

But that was BEFORE 1st June.  The outrage that greeted his announcement was substantially stronger, and far more widespread than I had expected.  Progressive voices within the USA were quick to pounce, both on the decision itself and on the arguments Trump used to justify it.  The news media around the world (the serious news media like the New York Times and the Washington Post) not only reported the decision, but wrote editorials critical of it.  The Economist referred to the decision as “unconscionable and fatuous” and reported it was a decision rejected by most of his advisors, most large US companies, and 2/3 of Americans.  The New Yorker dug deeper and described how the decision (and its support by most Republican members of congress) was a clear demonstation of the effectiveness of the dark money campaign by the Koch brothers and others on behalf of the fossil fuel industry.  David Rank, chargé d’affaires at the US Embassy in Beijing and a career diplomat with 27 years’ service, resigned from the State Department because he could not deliver the formal announcement of Trump’s decision to the Chinese in good conscience. Foreign leaders of every political stripe joined in with comments ranging from deeply disappointed to outright anger.   The Economist felt the decision had dealt a severe blow to America’s interests and international standing.  Even my friend, Randy Olson, who pleads constantly for environmental scientists to learn how to tell their stories effectively, jumped in, claiming Trump was the B in the ABT rule for story-telling (his blog post on this is worth a read).  And Twitter was alive with outrage.  Meanwhile a large number of other actors pledged to move forward on climate no matter what the Trump administration decided.  Here are my thoughts on the substance of the decision.

This image accompanied the New York Times editorial on June 1st.  Not only has the flag fallen out of the tree of countries in the Paris agreement, the flag is being flown upside down, and we all know what that symbolizes!  Image © New York Times

National Public Radio has provided a full annotated transcript of the event including the opening remarks by Vice President Mike Pence, and closing remarks by EPA Administrator, Scott Pruitt.  The comments of those two gentlemen reveal the enormous gulf that presently exists in American political life.  Here is one quote from Pence:

“Since the first day of this administration, President Donald Trump has been working tirelessly to keep the promises that he made to the American people. President Trump has been reforming health care, enforcing our laws, ending illegal immigration, rebuilding our military, and this president has been rolling back excessive regulations and unfair trade practices that were stifling American jobs. Thanks to President Trump’s leadership, American business are growing again, investing in America again, and they’re creating jobs in this country instead of shipping jobs overseas. Thanks to President Donald Trump, America is back.”

Apart from the obvious (and acceptable) boosterish tone, this quote is full of aspirations expressed as achievements, plus claims of causation for events, such as job growth, that may or may not be justified.  Reading it, I struggle to understand the nature of the rose-colored spectacles that Pence and colleagues are wearing, because the Trump presidency does not look remotely like that to me.  CORRECTION – not rose-colored spectacles, Pence is not wearing any.  Must be the nature of the cool-aid I do not understand.

Scott Pruitt’s closing comments are not quite so egregious.  In fact, he even seems to consider reducing CO2 emissions to be a good thing – a strange perspective from one who denies the existence of anthropogenic climate change.   But there are two sentences in the middle that typify the problem some American leaders have with being a part of the world:

“This is an historic restoration of American economic independence, one that will benefit the working class, the working poor, and working people of all stripes. With this action, you have declared that the people are rulers of this country once again.”

Apparently, for Pruitt, and perhaps Trump, international agreements erode sovereignty, while restoring that sovereignty will somehow help the poor.  Renouncing Paris somehow restores American democracy?  But, hey, I’m not a political scientist.  I’m just a lowly environmental scientist who cannot be expected to understand.

Trump’s 1st June announcement revealed either total unconcern about details, or total lack of understanding of the Paris Agreement.  He refers to it, throughout as the Paris Accord, when its correct name is Paris Agreement (lots of people make this error).  But in one telling sentence he reveals how little he knows about its content:

“Thus, as of today, the United States will cease all implementation of the non-binding Paris Accord and the draconian financial and economic burdens the agreement imposes on our country.”

Does Donald Trump not know what the word ‘non-binding’ means?  How can a non-binding agreement impose severe financial or economic burdens on a country?  Later he claims that “Compliance with the terms of the Paris Accord and the onerous energy restrictions it has placed on the United States could cost America as much as $2.7 million lost jobs by 2025, according to the National Economic Research Associates.”  Setting aside his reference to a widely disputed cost estimate, which, among other things, took no notice of new jobs likely to be created in the developing renewables economy, this sentence reinforces the view that the Paris Agreement sets mandatory costs on the USA.  It doesn’t.  That is what non-binding means.

Much of Trump’s announcement was a mish-mash of statistics about jobs, the economy, and growth or retreat of specific sectors, plus praise for the high environmental standards of the USA.  He is meanwhile doing all he can to erode those environmental standards.  Nowhere in his announcement does he mention climate change except for the spurious claim that “if the Paris Agreement were implemented in full, with total compliance from all nations, it is estimated it would only produce a [0.2oC change in temperature].”  That is one low-ball estimate of the incremental improvement due to Paris that has been widely disputed; a more realistic estimate is 0.8oC, but all people recognize that the commitments already on the table because of Paris are just a first step, and that there will be further commitments in the future.  (This fact about the Paris Agreement is seen by some as one of its greatest strokes of genius – it builds a community within which there will be peer pressure to do ever better – while others claim it is one of its great weaknesses.)  Instead of denying that climate change is a problem to solve (something I’d have expected from Trump), he avoids all mention of potential climate change impacts and their costs, and converts the Paris Agreement into some nefarious plot by those other nations to unfairly constrain the vibrant economy of the USA.

Bizarrely – well, OK, the whole announcement is bizarre, but, even more bizarrely — he announces that on withdrawing from the Paris Agreement, the US will immediately begin to renegotiate it.  I guess this kind of brinksmanship is the type of business negotiation he is used to, but does he realize how long was spent in negotiating Paris?  Does he realize that to formally withdraw, the USA must wait 3 years from its date of coming into force (4th November, 2016) to send the letter, and an additional year before the withdrawal takes place (that’s in 2020, just after the next Presidential election)?  When is he expecting to commence renegotiations?  If there is one thing that Trump’s announcement made abundantly clear, it is that he simply does not understand the details of the agreement that he is determined to withdraw from.  But then, we are all beginning to learn that Trump does not bother about details.  Ever.  Just the spectacle.  Just the pomp.  Truly an Emperor without any clothes on.

This image is a year old, but is as relevant today as back then.
Cartoon
© Steve Sack, Star Tribune.

Yet the environmental crisis goes on

Despite the Trump circus, the media continue to provide coverage of the environmental crisis.  Bloomberg has now put up two of three articles on changes in the Arctic on its website.  The third will appear in June.  Apart from stunning photography (such as this image showing what can happen when melting permafrost burps methane), the articles provide an update on how rapidly the Arctic is warming, and on the impacts of this on the weather, the natural environment, and international politics and economics.  Countries like Canada should recognize there is a huge downside to continued warming up there.

A crater formed by the explosion of a “pingo”, a pocket of methane gas, on Russia’s Yamal Peninsula, northern Siberia.  Those are people standing on the edge.  Warming is leading to more frequent occurrences and greater methane emissions.  Photo © Vasily Bogoyavlensky/AFP

On 18th May, a report in The Guardian detailed a paper published in Scientific Reports by Sean Vitousek of University of Illinois at Chicago, with five colleagues from the US Geological Survey and University of Hawaii.  They evaluated the consequences for flooding risk of continued sea level rise.  While sea level rise of ~4mm per year will not cause significantly increased flooding risk directly for many years, it does facilitate flooding during storm events when seas can be noticeably elevated above usual levels.  Flood risk management is always about these extreme events and how frequently they can be expected to occur.

Putting aside the disturbing fact that estimates of sea level rise expected during this century continue to rise as scientific understanding of the behavior of glaciers grows. The Vitousek article, by analyzing the effects of elevated sea level on impacts of large waves and storm surges, showed first that these effects are somewhat more important at low latitudes because tidal ranges are generally lower there.  They calculated that the risk of extreme water-level events is doubled by an increase in sea level of 5-10 cm.  This will likely occur by 2030.  Obviously, with still greater sea level rise the risk increases further.  In the authors’ view, the maps they developed of flooding risk suggest a dire future for many places including major cities like San Francisco, Mumbai, Ho Chi Min City and Abidjan.  As with other aspects of climate change, the picture keeps getting more bleak as we learn more details of how the planetary systems will respond to the changing climate.

On 9th May, Takamatsu Ito of Georgia Tech, and three colleagues from US and Japanese labs, published an article in Geophysical Research Letters.  The article is, as usual, behind a paywall, but there is a good summary of it on the website, Phys.Org.  Using a global database of ocean physics and chemistry, Ito and colleagues reviewed dissolved oxygen content in the upper 1000 meters of the global ocean for the period from 1958 to 2015.  They found a measurable reduction in oxygen content beginning in the 1980s, and continuing today.  The total reduction over that time is greater than the natural year to year variability in oxygen content, and its extent varies geographically.

The trend in oxygen content at three depths over the period 1958 to 2015.  Black areas are places missing data.  The reduction, measured as micromoles per year, is substantial in some parts of the ocean, and is partly caused by alterations in solubility of oxygen due to rising temperatures.  Image © M Ito and Geophysical Research Letters.

The amount of oxygen loss since 1980 is about three times more than anticipated based on temperature-induced changes in solubility.  Ito and colleagues believe this discrepancy can be explained by the simultaneous changes in water circulation associated with the warming.  The fact of the decline makes the long-term consequences for ocean biology an important question for ocean scientists in coming years.  Substantial loss of dissolved oxygen may contribute to the growth in coastal dead zones (chiefly caused by largescale nitrification due to land-sourced agricultural and domestic pollution) and has been a feature of several of the past mass extinction events on this planet.

Scientists continue to identify ways in which we are modifying this planet by our meddling with the atmosphere.  Politicians and the general public are increasingly aware of the urgency of the need to rein in CO2 emissions, in order to prevent extreme warming or run-away climate change.  Progress in decarbonizing the global economy is being made, although it remains far too slow.  June 1st, 2017 may well become identified as the day that climate change denial reached its ultimate level of absurdity, in the Rose Garden of the White House, and the day from which we will be able to mark the beginning of a global acceleration in actions to mitigate CO2 emissions.  The hope that sensitive ecosystems such as coral reefs can survive the next century has likely been bolstered, so long as we commit to a more active management of them than in the past.  By getting the rest of the planet to recognize, and commit publicly to the need to act on climate change now, Trump may actually have finally done something useful.

Trump?  Not my President!  No Sir!
A great photo showing parrotfish on Maldive reef
© Victor Tribunsky

Categories: Climate change, In the News, Politics, Uncategorized | Comments Off on Just exactly what did Donald Trump do on 1st June 2017?